

Comparison of the dosimetry systems for brachytherapy in terms of calibration coefficients

Iwona Grabska, Wioletta Ślusarczyk-Kacprzyk, Marcin Szymański

The Secondary Standards Dosimetry Laboratory, Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland

Laboratory accredited by the Polish Centre for Accreditation, accreditation No. AP 155* * an actual scope of accreditation No. AP 155 is available on the PCA website: www.pca.gov.pl

RAP25-88

The use of calibrated radiotherapy electrometers with well-type ionization chambers, traceably to primary standards directly or through secondary standards, is necessary and required by Polish law for the independent verification of brachytherapy source strength.

In Poland, these measuring instruments are calibrated at the Secondary Standards Dosimetry Laboratory which is now the integral part of the Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw.

Calibrations are made for a dosimetry system composed of:

- a) a vented well-type chamber;
- b) a source holder to position the source inside the well-type chamber, so called "adapter";
- c) an electrometer;
- d) an extension cable.

For these dosimetry system calibrations, the internal bias supply of the user electrometer is used to apply polarizing voltage.

These calibrations are in the scope of accreditation number AP 155 granted to our laboratory by the Polish Centre of Accreditation on May 28, 2014. This accreditation was granted for the conformity with the requirements of the PN-EN ISO/IEC 17025 standard.

The aim of this study was comparison of 58 dosimetry systems calibrated in period of 2022-2024 in Poland.

At that time the most commonly calibrated user well-type chambers were:

- HDR 1000 PLUS manufactured by Standard Imaging,
- 33005 manufactured by PTW;
- **33004** manufactured by PTW.

Characteristics of the studied well-type chambers, based on the data provided by the manufacturers:

H D R	1000 PLUS WELL CHAMBER	REF 9	30008) SPECIFI	CATIONS	
ADCL CALIBRATIO	ONS HDR ¹⁹² Ir and/or LDR radionuclides from	SENSITIVITY			
	various manufacturers as requested	SOURCE	Current to Air Kerma Strength (U=1uGym ² /h)	Current to Apparent Activity	
ACTIVE VOLUME	245 cm ³	HDR Iridium:	2.1 pA/U	8.6 nA/Ci 5.6 nA/Ci 9.1 nA/Ci 5.4 nA/Ci 2.4 nA/Ci	
CONNECTOR	Two lug triax BNC (standard) TNC, Type M, or BNC + Banana (optional)	LDR Iridium: Iodine: Palladium:	2.0 pa/0 2.3 pA/U 4.3 pA/U 2.1 pA/U		
RANGE	10 U to 80 MU 0.01 mCi to 20 Ci	A	0.9996, typical		
CABLE	3 ft, 1 m	ACCESSORIE	S Case (REF 50004) included	i	
BIAS VOLTAGE	± 300 volts, typical		Wall mount accessory (RE (5) Interlocking 1" lead ring	F 70007) gs (REF 70125)	
LEAKAGE	Less than 50 fA		Carrying case for any Com (REF 70012)	prehensive Calibration System	
STABILITY	0.2% (Reproducibility over 2 years)	DIMENSIONS	Height: 6.1 in, 15.6 cm	Insert Diameter: 1.4 in, 3.5 cm	
RESPONSE	\pm 0.5% over 25 mm at center of axis		Weight: 6.1 lbs, 2.7 kg	more rough. 1.0 III, 12.1 off	

Specifications subject to change without notice.

Characteristics of the studied well-type chambers, based on the data provided by the manufacturers:

well-type chamber type 33005

adapter T33004.1.013 for catheters with diameters between 1.8 mm and 3.2 mm

or adapter T33004.1.012 for catheters with diameters between 1.0 mm and 1.8 mm

or adapter T33002.1.009 for Nucletron afterloader

Specification Type of product	well-type ionization	Measures: Inner well diameter	32 mm	
Application	chamber source strength measure- ment of brachytherapy sources	Outer dimensions	height 180 mm base diameter 127 mm outer well diameter 93 mm	
		Weight	1.4 kg	
Measuring quantities apparent activity air kerma strength exposure strength		Useful ranges:		
Calibration	Ir-192, I-125, others upon request	Temperature	(10 40) °C for sources > 100 keV photons	
Nominal response	125 fA/MBq (lr-192) 65 fA/MBq (l-125)		< 100 keV photons or < 1 MeV electrons	
Nominal volume	116 cm ³	Humidity	(10 80) %, max 20 g/m ³	
Design	vented, guarded	Air pressure	(700 1060) hPa	
Chamber voltage	400 V nominal			
Reference point	87 mm below chamber top			
Long-term stability	≤ ± 1 % per year			
Leakage current	≤ ± 50 fA			

Characteristics of the studied well-type chambers, based on the data provided by the manufacturers:

well-type chamber type 33004

Type of product	Vented well-type chamber type 33004	Reference point	84.5 mm (3.327 in) below chamber top
 Application 	Calibration of afterloading sources in connection with a therapy dosemeter	Change of response with source positioning change + 1 cm	< 1 %
Calibration	¹⁹² Ir, others upon request	Chamber voltage	max 500 V
Measuring	Air kerma strength,		111ax. 500 V
quantities	apparent activity,	Leakage current	< 0.5 pA
	exposure strength	Temperature	(10 40) °C, (50 104) °F
Measuring ranges	(in connection with PTW-UNIDOS)	range	
LOW MEDIUM	1.7 MBq 1.7 GBq 85 MBq 85 GBq	 Relative humidity range 	(10 80) %, max. 20 g/m ³
HIGH	8.5 GBq 8.5 TBq ¹) ¹)The upper limit of the measuring	 Air pressure range 	(700 1060) hPa
	range at 400 V for a saturation of	Dimensions	
	99.5 % 1s 4 TBq	Height	190.5 mm, 7.5 in
Resolution	The resolution of the digital	Base diameter	178 mm, 7 in
	display is at least 0.5 % of the measuring ranges given	Shaft outer diam. Shaft inner diam.	93 mm, 3.66 in 32 mm, 1.26 in
 Measuring volume 	200 cm ³	 Weight 	2.4 kg, 5.29 lbs

Methods

We compared calibration coefficients values for each of three groups of well-type ionization chambers mentioned earlier.

The **calibration coefficients** based on standards of the reference air kerma rate (N_{RAKR}) were established in ¹⁹²Ir radionuclide in reference conditions defined in:

- the IAEA-TECDOC-1274;
- Technical Reports Series No. 492 issued by the International Atomic Energy Agency.

IAEA-TECDOC-1274	
Calibration of	
photon and beta ray sources	Construction of the Advances o
used in brachytherapy	
Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals	TELMINICHE REPORTS SERIES TIU.
	Dosimetry in Brachytherapy –
	An International Code of
	Practice for Secondary
	Standards Dosimetry
È	Laboratories and Hospitals
INTERNATIONAL ATOMIC ENERGY AGENCY $A \equiv A$	

Methods

EA-4/02 • Evaluation of the Uncertainty of Measurement in calibration

ERELIROPEAN

Publication Reference

EA-4/02 M: 2022

Evaluation of the Uncertainty of Measurement in calibration

The purpose of this document is b harmonie evaluation of uncertainty of measurement within EA to set up, in addition the general requirements of EA, the specific demands in reporting uncertainty of measurement on calibration certificates issued by accredited laborationes and to assist accreditation bodies with a coherent asignment of Calibration and Heasurement Capatibility to calibration and taboratories accredited by them. As the rules laid down in this document are in compliance with both LAC policy for uncertainty in calibration and the recommendations of the Guide to the Expression of Uncertainty in Measurement, the implementation of EA-402 will also foster the global acceptance of European results of measurement.

4th April 2022_rev03

Page 1 of 78

Measurement uncertainties have been determined in accordance with document EA-4/02 M:2022 Evaluation of the Uncertainty of Measurement in Calibration.

Results

The uncertainty value of N_{RAKR} for HDR 1000 PLUS well-type chambers ranges from 3.0% to 3.2% of the value of N_{RAKR} .

It is an expanded uncertainty with a probability of expansion of about 95% and a coverage factor of k = 2.

Results

The uncertainty value of N_{RAKR} for examined 33004 and 33005 well-type chambers ranges from 3.0% to 3.2% of the value of N_{RAKR} .

It is an expanded uncertainty with a probability of expansion of about 95% and a coverage factor of k = 2.

Results

RAP CRETE 2025 INTERNATIONAL CONFERENCE ON RADIATION APPLICATIONS HENVIRONMENTAL SCIENCES

Descriptive statistics

Type of chambers	HDR 1000 PLUS	33004	33005
Number of observations	31	6	19
Arithmetic mean value of N_{RAKR} [mGy / (h \cdot nA)]	0.466	0.965	0.922
Median value of <i>N_{RAKR}</i> [mGy / (h · nA)]	0.465	0.964	0.917
Standard deviation value of N_{RAKR} [mGy / (h \cdot nA)]	0.0020	0.012	0.013
Range of <i>N_{RAKR}</i> [mGy / (h · nA)]	0.008	0.031	0.038
Q ₁ [mGy / (h · nA)]	0.464	0.955	0.915
Q ₃ [mGy / (h · nA)]	0.467	0.976	0.919
<i>Ν_{RAKR max}</i> [mGy / (h · nA)]	0.470	0.983	0.951
<i>Ν_{RAKR min}</i> [mGy / (h · nA)]	0.462	0.952	0.913
N _{RAKR max} / N _{RAKR min}	1.02	1.03	1.04
Outliers [mGy / (h · nA)]	none	none	0.951, 0.947, 0.951

Conclusions

The obtained results indicate that the maximum differences in the calibration coefficients of the analyzed dosimetry systems for brachytherapy do not exceed 4% in the type of the chamber.

Therefore, it should be remembered that use of each dosimetry system in clinical work must always be preceded by its calibration in a competent calibration laboratory. This will enable verification of brachytherapy source strength with the expected accuracy.

Thank you for your attention.